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Graph Representation and Optimization over Graphs

Graph representation is becoming popular in various domains:

(a) Sets of molecules [Loos et al.,
2019]

(b) Neural Architectures [Ru et al., 2020]

Figure: An illustration of graph structured data.

l Graph Optimization: Consider optimization over expensive black-box functions f (G) defined
over a space of graphs G differing in topology (structure, size) and attributes.
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The issue of standard Bayesian Optimization for Graph Optimization

arg maxx∈X f (x)

Algorithm 1 Canonical BO Loop
1: Initialize datasetD0 = {(xi, yi)}n0

i=1

2: for t = 1, . . .N do
3: Fit GP modelM toDt−1

p(f |x,Dt−1) = N
(
µt(x), σ2

t (x)
)

4: Maximize acquisition function u(·) to se-
lect the next promising point:

x∗
t = arg max

x∈X
u
(
µt(x), σ2

t (x)
)

5: Query the true objective: yt = f (x∗
t )

6: Update dataset: Dt = Dt−1 ∪ {(x∗
t , yt)}

7: end for
Figure: Illustration of Bayesian Optimization iterations
(Figure from Shahriari et al. [2015])
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Optimizing in Graph Space is Challenging

l Enumerating is infeasible.
l Search Space is (super) exponentially large
l Random combination of variables does not
admit a feasible graph

l Existing heuristics (e.g., evolutionary
algorithm) does not have optimality
guarantee.

l Hard to handle structured constraints (e.g.,
only optimize for all connected graphs).
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Global Acquisition Optimization for Structured Graph
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µt(x), σ2

t (x)
)

4: Maximize acquisition function u(·) to se-
lect the next promising point:

x∗
t = arg max

x∈X
u
(
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)

5: Query the true objective: yt = f (x∗
t )

6: Update dataset: Dt = Dt−1 ∪ {(x∗
t , yt)}

7: end for

This Talk

Based on the shortest-path kernel [Borgwardt
and Kriegel, 2005], we develop a graph
encoding that enablesMathematical
Programming for optimization over graph
spaces, that:

l Can handle different graph structures.
l Guarantees global optimality of acquisition
optimization.

l Can be used for molecular design and neural
architecture search.
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Preliminaries



Graphs

What is a graph? Amathematical structure with nodes (vertices) and edges (connections)

1

2 3

4

Complete Graph
All nodes connected

O

H H

(Undirected) Connected Graph
Path between any pair

Applications:
• Molecules
• Social networks

x

h1 h2

o

conv skip

pool
conv

conv

DAG
Directed, no cycles

Applications:
• Neural nets
• Workflows



Graph Concepts and Notations

Graph Definitions

l Graph: G = (V,E)where:
l V = set of nodes
l E ⊆ V × V = edges

l Adjacency: A ∈ {0, 1}n×n

l Auv = 1 ⇔ (u, v) ∈ E

Key Notation

l Node exists: Avv = 1 ⇔ v ∈ V
l Distance: du,v = shortest path length
l Path indicator: δw

uv = 1 if w on path
l Path info: eu,v = (du,v, lu, lv)

1

2 3

Graph 1 (Cycle)
V1 = {1, 2, 3}
E1 = {(1, 2), (1, 3), (2, 3)}
d2,3 = 1

A1 =

1 1 1
1 1 1
1 1 1


δ12,3 = 0

1

2 3

Graph 2 (Tree)
V2 = {1, 2, 3}
E2 = {(1, 2), (1, 3)}
d2,3 = 2

A2 =

1 1 1
1 1 0
1 0 1


δ12,3 = 1
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Gaussian Processes over Graphs and Shortest-Path Kernel

Gaussian Process provide posterior predictive distribution as:

µ(x∗) = k(x∗,X) [K(X,X) + σ2
nI]−1y, σ2(x∗) = k(x∗, x∗)− k(x∗,X) [K(X,X) + σ2

nI]−1k(X, x∗)

Shortest-Path (SP) Kernel[Borgwardt & Kriegel, 2005] Compare all shortest paths between all node pairs
in two graphs

General form:
kSP(G1,G2) =

∑
(u1,v1)∈V1×V1

(u2,v2)∈V2×V2

kpath(eu1,v1 , eu2,v2)

Path comparison:
kpath = kv(lu1 , lu2) · ke(du1,v1 , du2,v2) · kv(lv1 , lv2)

With (Normalized) Dirac kernels (exact matching):

kSP(G1,G2) =
1

n2
1n2

2

∑
(u1,v1),(u2,v2)

1{lu1 = lu2 , du1,v1 = du2,v2 , lv1 = lv2}
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SP Kernel Variants
Handling Complex Graphs
Attributed Graphs: X = (G,F)

l G: Graph structure + labels
l F: Node features (continuous)
Composite kernel:

k(X1,X2) = αkG(G1,G2)︸ ︷︷ ︸
structure

+βkF(F1,F2)︸ ︷︷ ︸
features

Simplified SP (SSP) Kernel
Drops label requirements:

kSSP =
1

n2
1n2

2

∑
u1,v1,u2,v2

1{du1,v1 = du2,v2}

✓ Less sparse

Nonlinear Extensions
Exponential variants:

kESP(G1,G2) = exp
(

kSP(G1,G2)

σ2
k

)

kESSP(G1,G2) = exp
(

kSSP(G1,G2)

σ2
k

)
✓More expressive × Harder to optimize

Summary of Variants

Kernel Labels in kG? Nonlinear?
SP Yes No
SSP No No
ESP Yes Yes
ESSP No Yes
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Acquisition Maximization in Graph Spaces:
The Optimizers



Mixed Integer Programming with Auxiliary Variables

MIP Standard Form

min
x,z

cTx + dTz s.t. Ax + Bz ≤ b, Ex + Fz = g, x ∈ Rn, z ∈ {0, 1}m

Example: Optimizing f(x, z) = x2 − 2
√

z where x ∈ {0, 1, 2, 3}, z ∈ [0, 4] Using MIP

MIP Formulation:

min
x,z,y,w,λi

y − 2w (linear objective via auxiliaries)

s.t. x =

3∑
i=0

i · λi,

3∑
i=0

λi = 1

y = x2 (encoded via binary indicators)
w ≥ 0 by definition of

√
z

w2 ≤ z (relaxed to linear inequalities)
λi ∈ {0, 1}, z ∈ [0, 4]
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HowMIP SolversWork: Branch-and-Bound

Core Idea: Relaxation Provides Bounds
Original: min f(A)where Aij ∈ {0, 1}
Relaxed: min f(A)where Aij ∈ [0, 1]

Relaxed

(0,0) (1,0)

(0,1) (1,1)

Relaxed opt

Relaxed solution gives lower bound

A12

A34 Bound

Integer Bound

A12=0 A12=1

A34=0 A34=1

Branch-and-Bound Algorithm

1. Relax: Allow Aij ∈ [0, 1]
l Solve LP (polynomial time)
l Get lower bound on optimum

2. Branch: If Aij = 0.5:
l Left: Fix Aij = 0
l Right: Fix Aij = 1

3. Prune: Cut branch if:
l Bound≥ best integer found
l Infeasible subproblem

4. Repeat: Until all branches explored
l Select next node (heuristic)
l Continue branching

Efficiency: Early pruning via tight bounds
Complexity: BestO(N), WorstO(2N)

Modern solvers: Cuts, heuristics, parallelization



FromGraph BO toMixed Integer Programming

The Challenge
Goal: Optimize UCB acquisition function u(G) = µ(G) + βσ(G) over graphs

l Search space: Graph topology + node/edge labels (binary+ categorical variable)
l Objective: GP acquisition function (continuous, nonlinear)

Our MIP Formulation [Xie et al., 2024]

max
G,µ,σ

µ+ βσ (acquisition function) (1)

s.t. µ = KGXK−1
XXy (GP mean) (2)

σ2 ≤ KGG − KGXK−1
XXKXG (GP variance) (3)

G ∈ Gspecified (graph constraints) (4)

where:
l Blue variables: auxiliary (continuous) variables
l Black variables: are decisions (discrete)
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Challenge

Solving the optimization is not as simple as:
solve_MIP(acq_func, x_space, z_space)

Valid graphs are a tiny fraction of all adjacency
matrices

l Arbitrary A does not
l define a valid graph.
l define a graph in the space of our interest (e.g.,
Gconnected, GDAG)

Need explicit constraints to stay in valid graph
space

All matrices {0, 1}n×n

Connected DAG
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Graph Encoding:
Enabling MIP for Graph-Structured Optimization



Graph Encoding: FromGraphs to MIP Variables

Graph Encoding: Represent graph properties as MIP variables and constraints

Graph G ∈ Gconnected
formulate

Variables: (A, d, δ)
+

Logical constraints

reformulate
Variables: (A, d, δ)

+
MIP-compatible constraints

Properties We Must Encode

Basic Structure For Shortest Path Graph Type Constraints

• Edge existence: Auv ∈ {0, 1}

• Node presence: Avv ∈ {0, 1}

• Var size: Auv ≤ min{Auu,Avv}

• Shortest distance: du,v ∈ [0,n + 1]

• Path indicator: δw
uv ∈ {0, 1}

• Triangle: du,v ≤ duw + dwv

• If Auv = 1 then du,v = 1

• If δw
uv = 1 then du,v = duw + dwv

• Connectivity: du,v < n

• Undirected: Auv = Avu

• DAG: du,v + dvu ≥ n

(no cycles)
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MIP Reformulation

Logical Constraint MIP Reformulation (via Big-M)

Auv = 1 ⇒ du,v = 1
du,v ≤ 1 + n(1− Auv)

du,v ≥ 1− n(1− Auv)

Auv = 0 ⇒ du,v ≥ 2 du,v ≥ 2− Auv

δw
uv = 1 ⇒ du,v = duw + dwv

du,v ≤ duw + dwv + n(1− δw
uv)

du,v ≥ duw + dwv − n(1− δw
uv)

l Inactivate constraint when binary variable= 0, otherwise constraint becomes tight,
l The reformulation is not unique, in appropriate reformulation result change properties (e.g.,
bijectiveness).
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Theoretical Guarantee: Bijection Property

Theorem (Bijection between MIP solutions and connected graphs [Xie et al., 2025a])
For any feasible solution (A, d, δ) of our MIP formulation with n nodes, there exists a unique
connected graph G with the same (A, d, δ), and vice versa.

What This Means

Gconnected
1-to-1

exact correspondence
MIP solutions

Implications

l Nomissing graphs: Every connected graph can be found
l No invalid solutions: Every MIP solution is a real graph
l Global optimality: MIP provably finds the best graph

Implications

l Variable-size graphs: Same bijection holds [Xie et al., 2025a]
l DAGs: Extended with acyclicity constraints [Xie et al., 2025b]
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Acquisition Function Maximization in Graph Space: The Final Formulation

Our Complete MIP Formulation

max
G,µ,σ

µ+ βσ (acquisition function) (5)

s.t. µ = KGXK−1
XXy (GP mean) (6)

σ2 ≤ KGG − KGXK−1
XXKXG (GP variance) (7)

G ∈ Gconnected (graph constraints) (8)

How This Becomes MIP-Solvable
Component MIP Implementation
Graph G Variables (A, d, δ)with linear constraints
G ∈ Gconnected Logical constraints linearized via Big-M
Kernel KGX Function of (du,v) - linearized [Xie et al., 2024]
GP computations µ, σ Auxiliary continuous variables [Xie et al., 2024]
Products like KGXK−1

XX McCormick envelopes [Xie et al., 2024]

Result: Thousands of linear constraints + binary/continuous variables → Solved by branch-and-bound (Gurobi) →
Global optimal graph
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Empirical Investigation



Molecular Optimization

Figure: Bayesian optimization results on QM7 and QM9.



Neural Architecture Search Results

Figure: Numerical results of Graph BO on NAS-Bench-101 (N101) (N ≤ 7) and NAS-Bench-201 (N201) (N = 4).
(Top) Deterministic validation error. (Bottom) The corresponding test error. Median with one standard deviation
over 20 replications is plotted.



Takeaway

We enable exact Acquisition Function Optimization over graph spaces via MIP

Key Contributions

l Graph encoding: First MIP formulation for connected graphs and DAGs
l Theoretical guarantee: Proved bijection between MIP solutions and graphs
l Empirical validation: State-of-the-art performance on

l Molecular design (connected graphs)
l Neural architecture search (DAGs)

Practical Impact
Able to conduct small to medium scale N ≤ 30 (with acquisition optimization taking 1-10 minutes per
iteration) graph BO with connected graph or DAG, supporting discrete edge feature and node label.
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Thank you!
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Contact: j.qing@imperial.ac.uk
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