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Digital twins

A set of virtual information constructs that mimics the
structure, context and behaviour of an individual or unique
physical asset, that is dynamically updated with data from its
physical twin throughout its life-cycle that informs decisions that
realise value.

A model of an individual, informed by data, that influences decisions.
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Cardiac physiology
With Steve Niederer, Richard Clayton, Sam Coveney, Cesare Corrardo, Chris Lanyon, Fay
Frost, Mariya Mamiwajala, Marina Strocchi, . . .

Aim: move from treatment based on guidelines derived from
heterogeneous patient groups, to treatment tailored to individual patients
based on their data.
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Digital Twins for AF

The heart is an electrical-mechanical pump,
which contracts under electrical potential.

Left atrium - sinus rhythm
Atrial fibrillation (AF) is rapid and
uncoordinated electrical activation
(arrhythmia) leading to poor mechanical
function.

Some hearts sustain AF - others don’t.

Affects around 600,000 people in UK.
Catheter ablation removes/isolates
pathological tissue that
sustain/initiates AF.
Treatment unsuccessful in ≈40% of
patients .

Kirchof & Calkins 2017

https://youtu.be/VtMxTemNSSg
https://youtu.be/1gyu8G1kTWk
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Modelling activation
Corrado & Niederer 2016

Given an atrial geometry G, the simulator f models the voltage through
time v ≡ v(z , t) where z ∈ G.

∂v

∂t
= ∇ · (D∇v) + h

v (v − vgate) (1− v)

τin
− (1− h)

v

τout
+ ustim

∂h

∂t
=

{
(1− h)/τopen if v ≤ vgate

−h/τopen otherwise

Parameters x = {τopen(z), τout(z), τin(z),D(z)}
Control inputs ustim(z , t)

Each simulation takes ∼ an hour on a HPC.
Simulations are different for every patient specific geometry G
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Predicting AF
Coveney et al. 2022
In the clinic, cardiologists pace the heart (i.e. fix ustim) and collect noisy
measurements of local activation times (LAT) at some locations.

We need to estimate parameters:

π(x∗|y) where y = f (x∗, u = Fstim) + e

and predict if AF will be sustained after ablation a;

P(AF sustained|a) =

∫
P(AF sustained|x∗, a)π(x∗|y)dx∗
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Challenges of calibrating cardiac digital twins

Complex inference problem
High dimensional parameter x with sparse noisy data y

Expensive simulator f
Uncertain geometry

To be a practical clinical tool inference needs to be fast, cheap, and
scalable

GPs can help!
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Quick recap: Gaussian processes (GP)
Regression: given data {xi , yi = f (xi )}ni=1 learn f .

GPs can be thought of as probabilistic models of functions.

f , a random process indexed by x ∈ X , such that for x1, . . . , xn,

f = (f (x1), . . . , f (xn)) ∼ Nn(m,K)

where Kij = k(xi , xj)

f ∼ GP(m(·), k(·, ·))

Key choice is the covariance/kernel function k(x , x ′) = Cov(f (x), f (x ′))
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Why use GPs? Answer 1
The GP class of models is closed under various operations.

Closed under Bayesian conditioning, i.e., if we observe

D = (f (x1), . . . , f (xn))

then
f |D ∼ GP

but with updated mean and covariance functions.
Closed under addition

f1(·), f2(·) ∼ GP then (f1 + f2)(·) ∼ GP

Closed under any linear operator. If f ∼ GP(m(·), k(·, ·)), then if L is
a linear operator

L ◦ f ∼ GP(L ◦m,L2 ◦ k)

e.g. df
dx ,
∫
f (x)dx , Af are all GPs
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Why use GPs? Answer 2: non-parametric/kernel regression
We can also view GPs as a non-parametric extension to linear regression.

k determines the space of functions that sample paths live in.

β̂ = arg min
β
||y − Xβ||22 + σ2||β||22 regularised least squares

= (X>X + σ2I )−1X>y usual ridge regression estimator

= X>(XX> + σ2I )−1y the dual form

as (X>X + σ2I )X> = X>(XX> + σ2I )

so X>(XX> + σ2I )−1 = (X>X + σ2I )−1X>

where X =


x>1
x>2
...
x>n


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At first the dual form

β̂ = X>(XX> + σ2I )−1y

looks harder to compute than the usual

β̂ = (X>X + σ2I )−1X>y

X>X is p × p p = number of features/parameters
XX> is n × n n is the number of data points

But the dual form only uses inner products between vectors in Rn

XX> =

 x>1
...
x>n

 (x1 . . . xn) =

 x>1 x1 . . . x>1 xn
...

x>n x1 . . . x>n xn


=KXX if k(x , x ′) = x>x ′

— This is useful!
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Prediction
The best prediction of y at a new location x ′ is

ŷ ′ = x ′>β̂

= x ′>X>(XX> + σ2I )−1y

= kX (x ′)>(KXX + σ2I )−1y

where kX (x ′)> := (x ′>x1, . . . , x
′>xn) and [KXX ]ij := x>i xj

KXX and kX (x) are kernel matrices:
every element is an inner product between 2 points: k(x , x ′) = x>x ′

Note this is the GP conditional mean when m(x) = 0.

m(x) = kX (x)>(KXX + σ2I )−1y

linear regression and GP regression are equivalent when
k(x , x ′) = x>x ′.
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Including features I

We can replace x by a feature vector in linear regression, e.g.,
φ(x) = (1 x x2)

Only the inner product changes:

k(x ′, x) = x ′>x

is replaced by
k(x ′, x) = φ(x ′)>φ(x)

Note k(x ′, x) = φ(x ′)>φ(x) is a positive semi-definite function for any
choice of φ(x).
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Including features II
For some sets of features, φ(x), computation of the inner product doesn’t
require us to evaluate the individual features.

E.g., Consider X = R2 and let

φ : x = (x1, x2) 7→ (1,
√
2x1,
√
2x2, x

2
1 ,
√
2x1x2, x

2
2 )>

i.e., linear regression using all the linear and quadratic terms, and first
order interactions.
Then

k(x, z) = φ(x)>φ(z)

= (1,
√
2x1,
√
2x2, x

2
1 ,
√
2x1x2, x

2
2 )(1,

√
2z1,
√
2z2, z2

1 ,
√
2z1z2, z2

2 )>

= (1 + (x1, x2)(z1, z2)>)2

= (1 + x>z)2

To evaluate k(x, z) we didn’t need to explicitly compute the feature vector
φ(x)
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Including features III

To evaluate k(x, z) we didn’t need to explicitly compute the feature
vectors φ(z) ∈ R6

The same idea works with much larger feature vectors, sometimes even
when φ(x) ∈ R∞

Theorem: A function
k : X × X → R

is positive semi-definite (and thus a valid covariance function) if and only
if we can write

k(x , x ′) = φ(x)>φ(x ′)

for some (possibly infinite dimensional) feature vector φ(x).

So GP regression with k can be thought of as linear regression with an
infinite φ(x)
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Kernel regression (see Kanagawa et al. 2019)
Kernel regression and GP regression are closely related.

Consider the space of functions

Hk = span{k(·, x) : x ∈ X}

ie functions of the form
∑n

i=1 αik(x , xi ) with inner product

〈
∑

aik(·, xi ),
∑

bik(·, yi )〉 =
∑
ij

aibjk(xi , yj)

This is the reproducing kernel Hilbert space (RKHS) associated with k .
Kernel ridge regression chooses f ∈ Hk to minimise

L(f ) =
∑
i

(f (xi )− yi )
2 + σ2||f ||2Hk

We can show that
m̄(x) = arg min

f ∈Hk

L(f )

where m̄(x) is the same as the GP posterior mean
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TL;DR

Functions live in function spaces (vector spaces with inner products).
There are lots of different function spaces: the GP kernel implicitly
determines which particular (RKHS) space we work with - our hypothesis
space.

Generally, we don’t think too hard about this space, we just choose a
kernel and attempt to validate it empirically.

Although reality may not lie in the RKHS defined by k , this space is much
richer than any parametric regression model1,

thus is more likely to contain an element close to the true functional
form than any class of models that contains only a finite number of
features.

This is the motivation for non-parametric methods.

1and can be dense in some sets of continuous bounded functions
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Why use GPs? Answer 3: Naturalness of GP framework
Kriging

Suppose Y (x) is a (second order stationary) stochastic process with

EY (x) = µ ∀ x
Cov(Y (x),Y (x ′)) = k(x − x ′) ∀ x , x ′

NB we’re not assuming Y has a Gaussian distribution.

If someone tells you y = (Y (x1), . . . ,Y (xn))>, how would you predict
Y (x)?
One option is to find the best linear unbiased predictor (BLUP) of Y (x).
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Best Linear Unbiased Predictors (BLUP)

Consider the linear estimator

Ŷ (x) = c +
∑

wiY (xi ) = c + w>y

If we require Ŷ (x) to be unbiased,

µ = EŶ (x)

= E(c + w>y)

= c + w>µ

where µ = (µ, . . . , µ)>.

Thus c = µ−w>µ and we must have

Ŷ (x) = µ+ w>(y − µ)



Best Linear Unbiased Predictors (BLUP)

Consider the linear estimator
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Best Linear Unbiased Predictors (BLUP) - II
The best linear unbiased predictor minimises the mean square error

MSE (Ŷ (x)) = E((Ŷ (x)− Y (x))2)

= E
(

(w>(y − µ) + (µ− Y (x))2
)

= w>Var(y)w + Var(Y (x))− 2w>Cov(y,Y (x))

= w>KXXw + k(0)− 2w>kX (x)

If we differentiate wrt w and set the gradient equal to zero, we find

0 = 2KXXw − 2kX (x)

and thus
Ŷ (x) = µ+ kX (x)>K−1

XX (y − µ)

as before.
So the Gaussian process posterior mean is optimal (i.e. is the BLUP) even
if we don’t assume Gaussianity.
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Problem 1: GPs on manifolds
Coveney et al. IEEE TBME 2019

We want to estimate
the time of arrival of the wave front - the Local Activation Time
(LAT)
the wave’s Conduction Velocity (CV)

using data from an Electrophysiology (EP) study:
electrodes placed on the surface of the atrium and electrical pacing
applied at various frequencies.



Estimating local activation times from electrograms
Coveney et al. IEEE TBME 2019

How should local activation times
(LAT) be inferred from a clipped
bipolar electrogram?

We model the local ECG as
V (t) and infer the position of
the maximum, accounting for
the clipped (censored) voltage
trace.



Interpolation between locations

We want to estimate activation times at all locations on the atria (the
LAT map)

Typically, only able to measure LAT a small number (∼10) of
locations on the atrium.

How can we interpolate to other locations?
LATobs(x) = LATtrue(x) + εEGM + εposition
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GP interpolation

We want to model

LAT (x) ∼ GP(m(x), k(x , x ′))

but standard approaches won’t work when the domain x ∈ G is an atrial
manifold

Typically covariance is a function of the Euclidean distance between
two points i.e. k(x , x ′) ≡ k(‖x − x ′‖2),

We want the interpolation to take into account distance on the manifold
travelled by electrical wave.

Defining a valid positive definite covariance function on the manifold
is hard!
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GP basis expansions
We can consider basis expansions of GPs

f (x) =
∞∑
i=1

wiφi (x)

where φ(x) are basis functions, and wi random coefficients.

If wi ∼ N(0, λi ), then f (x) is a zero-mean GP with covariance function

k(x , x ′) =
∑

λiφi (x)φi (x
′)

Usually, we choose a covariance function k , and try to find convenient
basis expansions

Karhunen-Loeve expansion is mean square optimal, but
inconvenient....

We want to avoid specifying k(x , x ′) explicitly, as it is difficult to do so on
the atrium.
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Approach 1: INLA-SPDE approach: Lindgren et al. 2011
Coveney et al. 2019

For Matern covariance functions, there is a link between GPs and
stochastic partial differential equations (SPDE, Whittle) :

(κ2 −∆)α/2f (x) = W (x)

Allows us to fit GPs using the machinery of finite element methods
(allows solution in O(n3/2) instead of O(n3)).
Makes it easy to work on irregular domains.

LAT (x) =
n∑

k=1

wkφk(x) x ∈ G

with wk ∼ N(0, Q̃−1) where Q̃ is sparse.
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S1-S2 interpolation

The electrical restitution curve describes the recovery of action
potential duration as a function of the interbeat interval.

During an EP study the heart is ’paced’ at a regular S1 interval.
Premature interbeats introduced at interval S2
As the S2 interval shortens the heart tissue will eventually cease to
recover in time to activate for both beats



S1-S2 interpolation

The EP study measures activation time at ∼30 locations and ∼ 10 S2
intervals. We use INLA-SPDE approach to interpolate LAT at the
locations for a given S2 value.

allows us to borrow strength from different S2 intervals to improve
the interpolation?

Simplest way is to add S2 as an input, and assume an AR(1) relationship
between LAT (x ,S2i+1) and LAT (x , S2i )

LAT (x ,S2i+1) ∼ N(ρLAT (x ,S2i ), (1− ρ2)Q−1)

or more precisely

LAT (x ,S2) ∼ GP(0,Q−1
S2 ⊗ Q−1)
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Results: Cross validation

Opens interesting design questions around data collection protocols



Random samples

Unfortunately random samples produce unphysical (non-monotonic)
patterns. This isn’t a surprise - the GP doesn’t ’know’ it is modelling a
wave.
We can improve the situation by using a smoother covariance function
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Approach 2: Laplacian basis functions
Coveney et al. Phil. Trans. Roy. Soc. 2020

There is a duality between stationary covariance functions, and spectral
densities (Wiener-Khinchin):

S(ω) =

∫
k(r)e−iωrdr

Solin and Sarkka (2019) showed that if we use the Laplacian eigenbasis

−∇2φj(x) = λjφj(x) x ∈ G
φj(x) = 0 x ∈ ∂G

then

f (x) =
∑

wkφk(x) with wk ∼ N(0,S(
√
λj))

is a GP with spectral density S.
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This allows us to
specify a GP in terms of its spectral density, bypassing the need to
explicitly define a covariance function
work directly with processes on the atrial manifold

Note that
k(x , x ′) =

∑
S(
√
λj)φi (x)φi (x

′)

and that unlike many other expansions (e.g., Karhunen-Loeve), the
eigenfunctions don’t change if the hyper-parameters of the GP change.
Truncating the sum gives us an approximate low rank GP

k(x , x ′) ≈
M∑
i=1

S(
√
λj)φi (x)φi (x

′), f (x) ≈
M∑
i=1

wkφk(x)

for which inference can be done in O(M3) operations.
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Computing conduction velocities

Interest lies in conduction velocities, which are the inverse of the LAT
gradient. The Laplacian eigen expansion allows us to compute these

where
dk(x , x ′)

dx
=

M∑
i=1

S(
√
λj)

dφi
dx

(x)φi (x
′)

allowing us to compute variance estimates of the estimated conduction
velocities...
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Leveraging the Digital Tapestry: Cohort emulation

Our main cost (temporal, financial, computational) is forward runs of
each patient’s digital twin
Emulators can run the forward model quickly but require simulator
runs for training
Default approach is a single emulator per cohort member:
fi (θ) = gi (θ) + εi

𝑓! 𝜃 = 𝑔! 𝜃 + 𝜖!

Patient

Digital Twin

Emulator 𝑓" 𝜃 = 𝑔" 𝜃 + 𝜖" 𝑓# 𝜃 = 𝑔# 𝜃 + 𝜖#

…
𝑓$%! 𝜃 = 𝑔$%! 𝜃 + 𝜖$%!



Leveraging the Digital Tapestry: Cohort emulation

Our aim is to leverage information from the cohort to reduce
the computational cost of building emulators



Cohort learning method 1: Discrepancy emulators

Intuition: Say we gain new patients sequentially, we’ve learned a lot about
our first patient’s heart, what do we know about the next patient?
Propose a discrepancy model:

f1(θ) ≈ g1(θ) = ag0(θ) + δ(θ)

We can extend this approach to leverage information from the full cohort
of models:

fN+1(θ) ≈ gN+1(θ) =
N∑
i=1

aigi (θ) + δ(θ)

Due to the additive property of GPs gN+1(θ) is also a GP and can be
trained using GP regression.
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Results: Discrepancy emulators
Rodero et al. 2021, Baptiste et al. 2025, Lanyon et al. later in 2025



Cohort learning method 2: Latent feature emulators

Intuition: Our data generating function for each patient, fi (θ), is actually
a function over each patient’s cardiac geometry, G , such that

fi (θ) = f (θ,Gi )

On this basis we aim to learn a latent space representation of the
geometry, l , and use it to train a single Gaussian process emulator, g(θ, l)
such that

f (θ,Gi ) = g(θ, li ) + ε

Latent features can either be derived from a shape model or be
arbitrary (cf GP-LVM).



Results: Latent emulators, left in meshes
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Problem 3: Estimating tissue parameters

We have
Physics based electrophysiology simulator f (θ) that models LAT
given (spatially varying) tissue parameters θ(x) for x ∈ G.
Emulators that approximate the simulator at low cost
Observations, y , of LAT collected in EP studies

We need to
estimate the parameters from the EP data π(θ(·)|y)

and predict the result of ablation therapy.

P(AF sustained|a) =

∫
P(AF sustained|θ, a)π(θ|y)dθ

during a 30min procedure!
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Parameter estimation
Local approach

At each location xi , infer θ(xi ) using ABC with a look-up table of
simulations
Interpolate θ(x) across the atrium.

Dimension reduction: Find a projection P : RD → Rd to project the
parameter into a lower dimensional space and model low dimensional
approximation to the simulator:

f ′(z) = f (P>z)

We can choose P by
Global sensitivity analysis
Active subspace methods
ML magic: embedding learning methods, VAE etc
Handcrafted projections
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Real time calibration with the Ensemble Kalman Filter
Mamajiwala et al. 2024, 2025 (forthcoming)
Can use EnKF with a GP emulator to approximate π(θ|y)

Homogenous parameters
Works in close to real time
Can identify 2 (homogeneous) params, but sufficient for prediction of
S1S2
Improves AF prediction.



Conclusions
We can currently build DTs for a single patient, but at great expense

I Need to scale and speed up this process
We need:

I to find regularities in the problem to allow us to reduce dimension
I to learn strong population structured prior distributions
I to develop fast method to approximately infer parameters.

Gaussian processes have become a key part of the DT pipeline!
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