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Calibration of computer models

Simulator

Inputs
: ————

Outputs
Observations

Physical process

Calibration objective:

To find a set of input values so that the simulator represents best the
physical process as this is described by observations.
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The ‘Mukwano’ simulator

e A dynamic, stochastic, individual based model that simulates
heterosexual sexual partnerships and HIV transmission.
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The ‘Mukwano’ simulator

@ A dynamic, stochastic, individual based model that simulates
heterosexual sexual partnerships and HIV transmission.

22 inputs inc. contact rates, concurrency parameters, relationship
duration, 2 sexual activity groups (high/low), 2 concurrency groups
(high/low), 3 discrete behaviour periods.

18 outputs inc. population size, HIV prevalence, prevalence of men and
women in long/short duration partnerships with one or more partners.

o Run time varies from 10 mins to >3 hours for 1 simulator run.

Calibration data provided by a general population cohort in Uganda.
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A manual approach

Suppose we want to match male HIV prevalences at 3 points in time.
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A manual approach

We choose a set of inputs run the model and...
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A manual approach
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A manual approach
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A manual approach

...after 10 runs...
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A manual approach

...after 250 runs.
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History matching

e Rather than looking for the best input values, history matching identifies
and discards those unlikely to provide a match to the empirical data.
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History matching

e Rather than looking for the best input values, history matching identifies
and discards those unlikely to provide a match to the empirical data.

The implausible input space is discarded in iterations known as waves.

Not all inputs/outputs need to be considered at once.

@ The simulator is often ‘better behaved’ in smaller areas of input space.
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History matching

e Rather than looking for the best input values, history matching identifies
and discards those unlikely to provide a match to the empirical data.

The implausible input space is discarded in iterations known as waves.

Not all inputs/outputs need to be considered at once.

@ The simulator is often ‘better behaved’ in smaller areas of input space.

History matching relies on emulators for computational efficiency.
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An emulator example

The emulator gives a posterior distribution for the model output, con-
ditioned on the model runs we have seen so far.

Emulator of Model Output f(x)
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History matching - wave 1
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History matching - wave 2

Emulator of Model Output f(x)
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History matching - wave 3

Emulator of Model Output f(x)
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History matching - wave 4

Emulator of Model Output f(x)
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Challenges

e Large number of inputs and outputs.
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Challenges

Large number of inputs and outputs.

@ Unavailable model likelihood.

Long simulator running times.

Stochastic model.

I.Andrianakis (LSHTM) History matching September 15, 2016 12 / 39



Outline

Motivation.

e Emulation.

o Results.

History matching.

History matching September 15, 2016 13 / 39



Stochastic model

For an input x, the simulator’s output is a draw from an unknown
distribution, with mean g(x) and variance s(x).

® 7
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Stochastic model

For an input x, the simulator’s output is a draw from an unknown
distribution, with mean g(x) and variance s(x).

® 7

We can write this as:
f(x) =g(x) + €(x)

where €(x) is a zero mean r.v. with variance s(x).

I.Andrianakis (LSHTM) History matching September 15, 2016 14 / 39



The variance s(x)

The variance s(x) is a function of x and this has to be taken into account
in history matching.
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The variance s(x)

One approach is to assume a fixed variance across Xx.
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The variance s(x)

Estimating the variance can improve the results.
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An example
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Emulation

e Evaluate f(x) K times at each of N different inputs x,,.
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Emulation

e Evaluate f(x) K times at each of N different inputs x,,.

e Calculate means and log-variances

K

n = k‘ ka Xn A Xn) =In (f{l—l Z(fk(xn) - g(xn))2> :

k=1

o Gather training data D = {x,, §(x,)} and D’ = {x,,£(x,)}.
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Emulation

Evaluate f(x) K times at each of N different inputs x,,.

Calculate means and log-variances

= . 1 =
g(xn) = % kz_lfk(xn)a g(xn) =In (I(—l Z(fk(xn) - g(xn))2> :

k=1

o Gather training data D = {x,, §(x,)} and D’ = {x,,£(x,)}.

Use a GP prior on g and &, i.e. g(x) ~ GP(+,-), &(x) ~ GP(+,-).
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Emulation

Evaluate f(x) K times at each of N different inputs x,,.

Calculate means and log-variances

= . 1 =
g(xn) = % kz_lfk(xn)a g(xn) =In (I(—l Z(fk(xn) - g(xn))2> :

k=1

o Gather training data D = {x,, §(x,)} and D’ = {x,,£(x,)}.

Use a GP prior on g and &, i.e. g(x) ~ GP(+,-), &(x) ~ GP(+,-).

e Calculate posteriors: E*[g(x)], Var*[g(x)], E*[£(x)] and Var*[£(x)].
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Some emulator details

° g(x),£(x) ~ GP(h(x)B,0%(c(x,x') +v))
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Some emulator details
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@ ¢(x,x’) is the Matérn 3/2 correlation function.
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Some emulator details

° g(x),£(x) ~ GP(h(x)B,0%(c(x,x') +v))

h(x) =1+x+x% +x>.
@ ¢(x,x’) is the Matérn 3/2 correlation function.

e 3,02 are marginalised with p(3,0?) oc 07 2.
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h(x) =1+x+x% +x>.
@ ¢(x,x’) is the Matérn 3/2 correlation function.

e 3,02 are marginalised with p(3,0?) oc 07 2.

o Correlation lengths é and nugget v are estimated with maximum
likelihood.
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Some emulator details

° g(x),£(x) ~ GP(h(x)B,0%(c(x,x') +v))

h(x) =1+x+x% +x>.
@ ¢(x,x’) is the Matérn 3/2 correlation function.
2

e 3,02 are marginalised with p(3,0?) oc 0~

o Correlation lengths é and nugget v are estimated with maximum
likelihood.

All outputs are emulated independently.
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Uncertainty structure
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Uncertainty structure

Ve Vs Ve
OO

e We link z with the posterior expectation of g(x)’s emulator via
z=E"[gx)|+(+e+d+¢
where (, €, 6, ¢ are zero mean unimodal random variables.
o The variances Vs, V,, are provided by the model experts/data.

o Ve(x) = Var®[g(x)] and Ve(x) = exp(E*[¢(x)])-
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The implausibility measure

o The link function z = E*[g(x)] + { + € + § + ¢ allows us to write the
implausibility measure as:

Ho) — 2= Elga])
(V) + V) + Vi + V) 2
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o A large value of I(x), indicates that x is unlikely to result in a good
match between the model and the data.
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o A large value of I(x), indicates that x is unlikely to result in a good
match between the model and the data.

o A small value of x does not imply that x is good! We do not know yet.
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The implausibility measure

The link function z = E*[g(x)] + { + € + § + ¢ allows us to write the
implausibility measure as:

Ho) — 2= Elga])
(V) + V) + Vi + V) 2

A large value of I(x), indicates that x is unlikely to result in a good
match between the model and the data.

A small value of x does not imply that x is good! We do not know yet.

e The magnitude of I(x) is often judged based on Pukelsheim’s 30 rule.

The use of emulators allows to evaluate the implausibility almost
instantaneously.
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History matching procedure
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Results

@ We compare results of the fixed variance and emulated variance
approaches.
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@ At the end of both history matches, the non-implausible samples had a
70% probability to match all outputs.
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Results

@ We compare results of the fixed variance and emulated variance
approaches.

@ At the end of both history matches, the non-implausible samples had a
70% probability to match all outputs.

e Emulating the variance required 3 fewer waves and 43% fewer simulator
evaluations.
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Rejection rates
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Visualising the implausible space

The implausible space can be visualised with minimum implausibility
and optical depth plots.
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Visualising the implausible space
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Visualising the implausible space

Optical depth plot
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Implausibility plots wave 9 (fixed variance)
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Implausibility plots wave 6
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Implausibility of model runs (fixed variance)
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Implausibility of model runs
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Output matching
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Output matching
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Conclusion

o We extended history matching so that it can efficiently handle stochastic
models.
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Conclusion

o We extended history matching so that it can efficiently handle stochastic
models.

@ The mean and variance of the simulator’s output were both emulated
using a Gaussian process.

@ The simulator was calibrated in 6 waves instead of 9, requiring ~ 2000
simulator evaluations instead of ~ 3500.

e Linear regression models can be used for the variance instead of full GP
ones (Boukouvalas 2014).

@ Variance emulation can inform the number of replications needed at each
design point.

I.Andrianakis (LSHTM) History matching September 15, 2016 33 / 39



Mukwano 2.0

e Our epidemiologists came up with a larger version of Mukwano.(96
inputs, 50 outputs)
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Mukwano 2.0

e Our epidemiologists came up with a larger version of Mukwano.(96
inputs, 50 outputs)

e Simulates HIV transmission under various ART treatment strategies.

e Predicts the effects of ART on mortality and transmission over the next
15-20 years.

@ A simplified version of history matching was applied.

o History matching was carried out using linear regression instead of
emulators.

o This work was submitted in the Journal of Uncertainty Quantification
(Sep. 2016).
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Output matching
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Output matching

Proportion of HIV+ on ART
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Output matching
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Output matching
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Conclusion

e History matching provided hundreds of input points that match all the
outputs simultaneously.
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@ These inputs are used to run the simulator into the future and predict the
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e History matching provided hundreds of input points that match all the
outputs simultaneously.

@ These inputs are used to run the simulator into the future and predict the
effect of different ART interventions to mortality, HIV prevalence etc.

o It allows incorporating in the predictions the uncertainty about the values
of the input parameters.

@ The results feed into a number of other research projects that quantify
the effect of different ART deployment strategies, costs, etc.
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