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Calibration of computer models
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Physical process

Calibration objective:

To find a set of input values so that the simulator represents best the
physical process as this is described by observations.

I.Andrianakis (LSHTM) History matching September 15, 2016 3 / 39



The ‘Mukwano’ simulator

A dynamic, stochastic, individual based model that simulates
heterosexual sexual partnerships and HIV transmission.

22 inputs inc. contact rates, concurrency parameters, relationship
duration, 2 sexual activity groups (high/low), 2 concurrency groups
(high/low), 3 discrete behaviour periods.

18 outputs inc. population size, HIV prevalence, prevalence of men and
women in long/short duration partnerships with one or more partners.

Run time varies from 10 mins to >3 hours for 1 simulator run.

Calibration data provided by a general population cohort in Uganda.
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A manual approach

Suppose we want to match male HIV prevalences at 3 points in time.
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A manual approach

We choose a set of inputs run the model and...
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A manual approach

...we try again...
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A manual approach

...and again...
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A manual approach

...after 10 runs...
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A manual approach

...after 250 runs.
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History matching

Rather than looking for the best input values, history matching identifies
and discards those unlikely to provide a match to the empirical data.

The implausible input space is discarded in iterations known as waves.

Not all inputs/outputs need to be considered at once.

The simulator is often ‘better behaved’ in smaller areas of input space.

History matching relies on emulators for computational efficiency.
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An emulator example

The emulator gives a posterior distribution for the model output, con-
ditioned on the model runs we have seen so far.
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History matching - wave 1
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History matching - wave 2
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History matching - wave 3
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History matching - wave 4
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Challenges

Large number of inputs and outputs.

Unavailable model likelihood.

Long simulator running times.

Stochastic model.
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Stochastic model

For an input x, the simulator’s output is a draw from an unknown
distribution, with mean g(x) and variance s(x).

x Simulator f(x)

g(x) ≡ E[f(x)]

s(x) ≡ Var[f(x)]

We can write this as:
f(x) = g(x) + ε(x)

where ε(x) is a zero mean r.v. with variance s(x).
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The variance s(x)
The variance s(x) is a function of x and this has to be taken into account
in history matching.
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The variance s(x)

One approach is to assume a fixed variance across x.
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The variance s(x)

Estimating the variance can improve the results.
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An example
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Emulation

Evaluate f(x) K times at each of N different inputs xn.

Calculate means and log-variances

ĝ(xn) =
1

k

K∑
k=1

fk(xn), ξ̂(xn) = ln

(
1

K − 1

K∑
k=1

(fk(xn)− ĝ(xn))2
)
.

Gather training data D = {xn, ĝ(xn)} and D′ = {xn, ξ̂(xn)}.

Use a GP prior on g and ξ, i.e. g(x) ∼ GP(·, ·), ξ(x) ∼ GP(·, ·).

Calculate posteriors: E∗[g(x)], Var∗[g(x)], E∗[ξ(x)] and Var∗[ξ(x)].
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Some emulator details

g(x), ξ(x) ∼ GP(h(x)β, σ2(c(x,x′) + ν))

h(x) = 1 + x+ x2 + x3.

c(x,x′) is the Matérn 3/2 correlation function.

β, σ2 are marginalised with p(β, σ2) ∝ σ−2.

Correlation lengths δ and nugget ν are estimated with maximum
likelihood.

All outputs are emulated independently.
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Uncertainty structure

x Simulator f(x) ?

Vε

?

Vδ

y ?

Vφ

z

Emulator

? Vζ

z : Observations
y : Physical process

f(x) : Simulator’s output
x : Simulator’s input

Vζ : Code Uncertainty
Vδ: Model Discrepancy
Vε: Ensemble Variability
Vφ: Observation Uncertainty
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Uncertainty structure

x Simulator f(x) ?

Vε

?

Vδ

y ?

Vφ

z

Emulator

? Vζ

We link z with the posterior expectation of g(x)’s emulator via

z = E∗[g(x)] + ζ + ε+ δ + φ

where ζ, ε, δ, φ are zero mean unimodal random variables.

The variances Vδ, Vφ are provided by the model experts/data.

Vζ(x) = Var∗[g(x)] and Vε(x) = exp(E∗[ξ(x)]).
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The implausibility measure

The link function z = E∗[g(x)] + ζ + ε+ δ + φ allows us to write the
implausibility measure as:

I(x) =
|z − E∗[g(x)])|

(Vζ(x) + Vε(x) + Vδ + Vφ)1/2

A large value of I(x), indicates that x is unlikely to result in a good
match between the model and the data.

A small value of x does not imply that x is good! We do not know yet.

The magnitude of I(x) is often judged based on Pukelsheim’s 3σ rule.

The use of emulators allows to evaluate the implausibility almost
instantaneously.
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History matching procedure

Initial
design Simulator Emulator

Implau-
sibility

Design in
NI space Stop? End

YesNo
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Results

We compare results of the fixed variance and emulated variance
approaches.

At the end of both history matches, the non-implausible samples had a
70% probability to match all outputs.

Emulating the variance required 3 fewer waves and 43% fewer simulator
evaluations.
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Rejection rates

0 2 4 6 8 10
−11

−10

−9

−8

−7

−6

−5

−4

Wave

Lo
g1

0 
pr

op
or

tio
n 

of
 th

e 
or

ig
in

al
 in

pu
t s

pa
ce

 

 

Emulated variance
Fixed variance

I.Andrianakis (LSHTM) History matching September 15, 2016 25 / 39



Visualising the implausible space

The implausible space can be visualised with minimum implausibility
and optical depth plots.
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Visualising the implausible space

Optical depth plot
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Implausibility plots wave 9 (fixed variance)
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Implausibility plots wave 6
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Implausibility of model runs (fixed variance)
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Implausibility of model runs
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Output matching
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Output matching
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Conclusion

We extended history matching so that it can efficiently handle stochastic
models.

The mean and variance of the simulator’s output were both emulated
using a Gaussian process.

The simulator was calibrated in 6 waves instead of 9, requiring ∼ 2000
simulator evaluations instead of ∼ 3500.

Linear regression models can be used for the variance instead of full GP
ones (Boukouvalas 2014).

Variance emulation can inform the number of replications needed at each
design point.
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Mukwano 2.0

Our epidemiologists came up with a larger version of Mukwano.(96
inputs, 50 outputs)

Simulates HIV transmission under various ART treatment strategies.

Predicts the effects of ART on mortality and transmission over the next
15-20 years.

A simplified version of history matching was applied.

History matching was carried out using linear regression instead of
emulators.

This work was submitted in the Journal of Uncertainty Quantification
(Sep. 2016).
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Output matching
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Output matching
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Output matching
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Conclusion

History matching provided hundreds of input points that match all the
outputs simultaneously.

These inputs are used to run the simulator into the future and predict the
effect of different ART interventions to mortality, HIV prevalence etc.

It allows incorporating in the predictions the uncertainty about the values
of the input parameters.

The results feed into a number of other research projects that quantify
the effect of different ART deployment strategies, costs, etc.
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