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Goal of the talk

“Civilization advances by extending the
number of important operations which

we can perform without thinking of them.”
(Alfred North Whitehead)

I To make Machine Learning completely automatic.
I To automatically design sequential experiments to

optimize physical processes.



Global optimization

Consider a well behaved function f : X → R where X ⊆ RD is (in
principle) a bounded set.

xM = arg min
x∈X

f (x).

I f is explicitly unknown (computer model, process
embodied in a physical process) and multimodal.

I Evaluations of f may be perturbed.
I Evaluations of f are (very) expensive.



Expensive functions, who doesn’t have one?

Parameter tuning in ML algorithms.

I Number of layers/units per layer
I Weight penalties
I Learning rates, etc.

Figure source: http://theanalyticsstore.com/deep-learning



Expensive functions, who doesn’t have one?

Tuning websites with A/B testing

Optimize the web design to maximize sign-ups, downloads,
purchases, etc.



Expensive functions, who doesn’t have one?
[González, Lonworth, James and Lawrence, NIPS workshops 2014, 2015]

Design of experiments: gene optimization

I Use mammalian cells to make protein products.
I Control the ability of the cell-factory to use synthetic DNA.

Optimize genes (ATTGGTUGA...) to best enable the
cell-factory to operate most efficiently.



What to do?

If f is L-Lipschitz continuous and we are in a noise-free domain
to guarantee that we propose some xM,n such that

f (xM) − f (xM,n) ≤ ε

we need to evaluate f on a D-dimensional unit hypercube:

(L/ε)Devaluations!

Example: (10/0.01)5 = 10e14...
... but function evaluations are very expensive!



Regret minimization

The goal is to make a series of x1, . . . , xN evaluations of f such
that the cumulative regret

rN =

N∑
n=1

f (xM,n) −N f (xM)

is minimized.

rN is minimized if we start evaluating f at xM as soon as
possible.



Approach

1. Minimize the regret implies to see an optimization problem
as a decision problem.

2. Decision problems can be seen as inference if we take into
account the epistemic uncertainty we have about the system
we are studying.

Probability theory is the right way to model uncertainty.



Typical situation
We have a few function evaluations

Where is the minimum of f?
Where should the take the next evaluation?



Intuitive solution
One curve



Intuitive solution
Three curves



Intuitive solution
Ten curves



Intuitive solution
Hundred curves



Intuitive solution
Many curves



Intuitive solution
Infinite curves



What just happened?

I We made some prior assumptions about our function.

I Information about the minimum is now encoded in a new
function: the probability distribution pmin.

I We can use pmin (or a functional of it) to decide where to
sample next.

I Other functions to encode relevant information about the
minimum are possible, e. g. the ‘marginal expected gain’
at each location.



Bayesian Optimization

Methodology to perform global optimization of multimodal
black-box functions [Mockus, 1978].

1. Choose some prior measure over the space of possible
objectives f .

2. Combine prior and the likelihood to get a posterior over the
objective given some observations.

3. Use the posterior to decide where to take the next
evaluation according to some acquisition function.

4. Augment the data.

Iterate between 2 and 4 until the evaluation budget is over.



Probability measure over functions
Default Choice: Gaussian processes [Rasmunsen and Williams, 2006]

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

I Model f (x) ∼ GP(µ(x), k(x, x′)) is determined by the mean
function m(x) and covariance function k(x, x′;θ).

I Posterior mean µ(x;θ,D) and variance σ(x;θ,D) can be
computed explicitly given a datasetD.



Acquisition functions
Making use of the model uncertainty

Here we will use Gaussian processes. GPs has marginal
closed-form for the posterior mean µ(x) and variance σ2(x).

I Exploration: Evaluate in places where the variance is
large.

I Exploitation: Evaluate in places where the mean is low.

Acquisition functions balance these two factors to determine
where to evaluate next.



Exploration vs. exploitation
[Borji and Itti, 2013]

Bayesian optimization explains human active search



GP Upper (lower) Confidence Band
[Srinivas et al., 2010]

Direct balance between exploration and exploitation:

αLCB(x;θ,D) = −µ(x;θ,D) + βtσ(x;θ,D)



Expected Improvement
[Jones et al., 1998]

αEI(x;θ,D) =

∫
y

max(0, ybest − y)p(y|x;θ,D)dy



Information-theoretic approaches
[Hennig and Schuler, 2013; Hernández-Lobato et al., 2014]

αES(x;θ,D) = H[p(xmin|D)] − Ep(y|D,x)[H[p(xmin|D ∪ {x, y})]]



Illustration of BO
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Bayesian Optimization
As a ’mapping’ between two problems

BO is an strategy to transform the problem

xM = arg min
x∈X

f (x)
unsolvable!

into a series of problems:

xn+1 = arg max
x∈X

α(x;Dn,Mn)
solvable!

where now:

I α(x) is inexpensive to evaluate.
I The gradients of α(x) are typically available.
I Still need to find xn+1: gradient descent, DIRECT or other

heuristics.



Some recent results in BO

I Parallelization

I Non-myopic methods.



Scalable BO: Parallel/batch BO
Avoiding the bottleneck of evaluating f

I Cost of f (xn) = cost of { f (xn,1), . . . , f (xn,nb)}.
I Many cores available, simultaneous lab experiments, etc.



Local penalization strategy
[González, Dai, Hennig, Lawrence, 2016]
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g(α(x;It,0))
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ϕ(x; xt, j)

 ,
g is a transformation of α(x;It,0) to make it always positive.



2D experiment with ‘large domain’

Comparison in terms of the wall clock time

0 50 100 150 200 250 300

Time(seconds)

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

B
e
st

 f
o
u
n
d
 v

a
lu

e

EI

UCB

Rand-EI

Rand-UCB

SM-UCB

B-UCB

PE-UCB

Pred-EI

Pred-UCB

qEI

LP-EI

LP-UCB



Non myopic Bayesian optimization

I Most global optimisation techniques are myopic, in
considering no more than a single step into the future.

I Relieving this myopia requires solving the multi-step
lookahead problem.

Figure: Two evaluations, if the first evaluation is made myopically,
the second must be sub-optimal.



GLASSES
Global optimisation with Look-Ahead through Stochastic Simulation and
Expected-loss Search [González, Osborne, Lawrence, 2016]

Automatic balance between exploration and exploitation



Results in a benchmark of objectives



Wrapping up

I BO is fantastic tool for global parameter optimization in
ML and experimental design.

I The model and the acquisition function are the two most
important bits.

I Non myopic approach are needed to find good balance
between exploration and exploitation.

I Software available! Use GPyOpt!
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