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Uncertainty Quantification (UQ)

Statistical problems associated with use of complex
mathematical/mechanistic/‘computer’ models
An active area of research in the Statistics community since the 1980s

Design and Analysis of Computer Experiments
Bayesian Analysis of Computer Code Outputs

More recent interest from the Applied Maths community
Many analyses involve the use of Gaussian processes
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Computer models

Computer model: function f with inputs x and outputs y

y = f(x).

Refer to computer model as a simulator
f usually not available in closed form.
f constructed from modeller’s understanding of the process.

There may be no physical input-output data.
f may be deterministic.
Computer experiment: evaluating f at difference choices of x

A ‘simulator run’: evaluating f at a single choice of x.
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Example: rainfall run-off simulator
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Ground
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    hgw
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   hr

Figure 11: A simple three-compartment rainfall-runoff simulator where the arrows
show the flow of water through the system.
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Example: finite element modelling

simulator of machining of a
metal
Inputs: tool parameters, cutting
parameters and material
properties
Outputs: forces and
temperatures at various
locations
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Not concerned with (purely) statistical models

mortality
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mortalityi = β0 + β1 × log (so2)i + β2 × income+ β3 × education+ εi
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Uncertainty in simulator inputs

Simulator may be set up to accept ‘controllable’ inputs only.
But there may be other parameters/coefficients/variables ‘hard-wired’
within the simulator.
We define the input x to include these other numerical values used to
calculate the outputs.
Suppose that there is a true input value, X, with at least some
elements of X uncertain.
What is our uncertainty about Y = f(X)?
We quantify uncertainty about X with a probability distribution pX
Then need to obtain the distribution pY .
Can propagate uncertainty using Monte Carlo: sample X1, . . . , XN

from pX and evaluate f(X1), . . . , f(XN )

What do we do if f is computationally expensive?(Gaussian processes!)
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Probabilistic sensitivity analysis of simulator outputs

Interested in Y = f(X), where X is uncertain with (known)
distribution pX.
Sensitivity analysis: which elements in X = {X1, . . . , Xd} are most
responsible for the uncertainty in Y = f(X)?
Write X = (Xi,X−i). Consider ‘importance’ of Xi via

V arXi{EX−i
(Y |Xi)}

The expected reduction in variance if value of Xi is learnt, because

V ar(Y ) = V arXi{EX−i
(Y |Xi)}+ EXi{V arX−i

(Y |Xi)}

Can speed up computation with Gaussian processes...
...but (sometimes) other methods are better!
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Variance-based sensitivity analysis

— pX1(x1)

— E(Y |X1 = x1)

— pX2(x2)

— E(Y |X2 = x2)
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Need to think carefully about input distributions

Consider
f(x) = exp(−x),

with Y = f(X) and
X ∼ U [0, b].

In this case we have

V ar(Y ) =
b− 2 + 4 exp(−b)− (b+ 2) exp(−2b)

2b2
,

Increasing b increases the variance of X but decreases the variance of Y
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Example1: modelling Rotavirus

Simulator developed by GlaxoSmithKline. Predicts incidence of
rotavirus in a population before and after a vaccine is administered to
a proportion of the infant population
Deterministic compartmental model, 672 compartments (16 disease
stages × 42 age classes)
Inputs include transmission rates between age groups, reduction in risk
following each infection
Outputs: time series of rotavirus incidence for six age groups following
vaccination programme
GSK analysis investigated sensitivity of output to 9 inputs, using 8200
simulator runs
We consider sensitivity of output to 20 inputs, using 340 simulator
runs

1MUCM case study: analysis by John Paul Gosling, Hugo Maruri-Aguilar, Alexis
Boukouvalas
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Variance based sensitivity analysis

Analysis for an individual output: no. of infections in 2-3 age group after 2
years
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Decision-theoretic sensitivity analysis
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Decision-theoretic sensitivity analysis
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A quick plug

Thursday morning: workshop on sensitivity analysis
Theory, computation, brief intro to eliciting input distributions
Practical using R
But no Gaussian processes!
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Calibration/ inverse problems

Example problem from Kennedy and O’Hagan (2001)

A Gaussian plume deposition simulator f(xcont, xcalib) predicts
deposition of radionuclides at a location xcont following release of
unknown concentration Xcalib from point source
Measurements of the true deposition z(xcont) at a limited number of
locations xcont available.
Aim: to predict deposition at other locations using both data and
simulator.
What value of xcalib do we use?
And what happens if the simulator is wrong?
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Calibrating an imperfect simulator

Wish to estimate Xcalib = g:
acceleration due to Earth’s
gravity
I drop a tennis ball from my
office window at height xcont,
and time its descent to the
ground
Estimate g via

t =
√
2xcontg

Will have error in measurements,
so take replicates
The more measurements I take,
the more certain I become about
the wrong value
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The calibration model

Kennedy and O’Hagan (2001)

z(xcont,i) = ρf(xcont,i, Xcalib) + δ(xcont,i) + εi

δ(xcont,i) is the discrepancy (bias) between simulator output and
reality.
δ modelled as a Gaussian process
Doesn’t always go down well with modellers!

“I’m horrified! You should be improving your models with
better physics!”

Accounting for simulator discrepancy important, otherwise
can become certain about a ‘wrong’ input value
simulator predictions can be spuriously precise
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Calibration inputs

z(xcont,i) = ρf(xcont,i, Xcalib) + δ(xcont,i) + εi

Two types of input
Observable: has true value, independent of the simulator
Tuning input: artefact of the simulator. ‘Best value’ rather than ‘true
value’

Kennedy & O’Hagan model good for interpolating physical
observations...
...but problems if aim is to learn true values of ‘observable’ calibration
inputs or extrapolate, even if allowance for simulator discrepancy δ

Brynjarsdottir, J. and O’Hagan, A. (2014). Learning about physical
parameters: The importance of simulator discrepancy. Inverse Problems,
30.
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Calibration via history matching

The calibration problem again: try to find x such that f(x) is ‘close’
to observation z
Emphasis now on discarding region of input space where the simulator
can’t fit the data
For computationally expensive simulator, will use Gaussian process
emulator for f
Assess the “implausibility” of an input value x via

I(x) =
|z − E{f(x)}]|

[V ar{f(x)}+ V ar(ε) + V ar(δ)]1/2
.

For multiple outputs, can consider maximum implausibility for each
output
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History matching: toy example
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Case study2: HIV in Uganda

“Mukwano”: a dynamic, stochastic, individual based model that
simulates sexual partnerships and HIV transmission
Births, deaths, partnership formation and dissolution and HIV
transmission were modelled using time-dependent rates
22 inputs, e.g. proportions of men and women in “high sexual activity”
groups, transition probability of HIV per sex act during primary stage
of infection
Calibration data were collected from a rural general population cohort
in South-West Uganda. The cohort was established in 1989 and
currently consists of the residents of 25 villages
History matching iterated through 10 waves, 200-500 simulator runs
per wave

2I. Andrianakis, I. Vernon, N. McCreesh, T.J. McKinley, J.O., R. Nsubuga, M.
Goldstein and R.G. White
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Simulator runs after history matching
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Part 2: Gaussian processes for computer models

Lots of interest in the UQ community, dating back to Sacks et al.
(1989)
GPs use to “emulate” computationally expensive simulators y = f(x).
The simulators f are often deterministic
Emphasis on ‘small data’

Motivation for using a GP is that we cannot obtain many simulator runs

Jeremy Oakley (Sheffield) Computer Models September 2016 26 / 49



Emulators
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Want f(x1), . . . , f(xN ), but only know f(x1), . . . , f(xn), for
n << N .
Could estimate f given f(x1), . . . , f(xn)

but can we quantify uncertainty in the estimate?
A statistical inference problem:

Treat f as an uncertain function
Derive a probability distribution for f given f(x1), . . . , f(xn) (an
“emulator”)
Distribution represents a subjective judgement; there is no ‘true’
distribution for f .

Popular choice of distribution for f : Gaussian process
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Probability distributions for functions

Univariate normal (Gaussian) distribution Z ∼ N (m, v)

pZ(z) =
1√
2πv

exp

{
− 1

2v
(z −m)2

}
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Probability distributions for functions

Multivariate normal distribution Z ∼ Nd(m, V )

pZ(z) =
|V |− 1
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Probability distributions for functions

Gaussian process
Infinite set of random variables (e.g. f(x1), f(x2), . . .) with the property
that any finite subset have a multivariate normal distribution
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Modelling a function as a Gaussian process

Argument alert!
This treatment of GPs will appear to be different!

“The mean function”

It isn’t really!
Bear with me...
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Modelling a function as a Gaussian process

We write
f(x) = m(x) + Z(x)

m(.): the mean function - a parametric function of x, e.g.

m(x) =

p∑
i=0

βix
i,

βi uncertain (but can be integrated out of joint posterior analytically).
Z(.) a zero mean Gaussian process
Gaussian assumption is for the deviation of f(x) from m(x).
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f(x) = m(x) + Z(x)

Specify Z(.) by its covariance function, eg

Cov{f(xi), f(xj)} = σ2 exp

{
−
(
xi − xj
δ

)2
}

σ2 determines how far the f(x) deviates from m(x).
δ describes how ‘wiggly’ the function looks
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Covariance function parameters
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Equivalent ways to parameterise a GP

Consider, for scalar input x,

f(x) = xβ + Z(x)

with β|σ2 ∼ N(0, vσ2) (with v chosen), and Z(x) a zero mean GP as
before.
Then

E[f(x)] = 0

and
Cov(f(x1), f(x2)|σ2, θ) = vσ2x1x2 + σ2cθ(x1, x2) (1)

If we specify a zero mean GP with covariance function (1), for fixed v,
model is equivalent to the hierarchical GP with the mean function xβ.
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For the most common modelling choices, GPs with “mean functions”
can be re-written as zero-mean GPs with a modified covariance kernel
Which way you write the GP isn’t important...
...but choice of mean function/covariance kernel is!
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Example

Suppose we have

E{f(x)} = m(x) = 1 + x,

Cov{f(xi), f(xj)} = exp

{
−
(
xi − xj
0.5

)2
}
.
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Why we like Gaussian processes for modelling functions

−3 −2 −1 0 1 2 3

−2
2

4

x

f(x
)

We have observed f(x1), . . . , f(xn)
We want to know f(xn+1), . . . , f(xN )

Define

y = (f(x1), . . . , f(xn), f(xn+1), . . . , f(xN ))
T = (yT1 ,y

T
2 )

T .

Represent uncertainty about f(.) using a GP, so

y ∼ NN (m, V ).
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We have

y =

(
y1

y2

)
∼ NN

((
m1

m2

)
,

(
V11 V12
V21 V22

))
Then

y2|y1 ∼ NN−n(m∗2, V ∗22),
m∗2 = m2 + V21V

−1
11 (y1 −m1),

V ∗22 = V22 − V21V −111 V12

‘Easy’ to predict (and quantify uncertainty about) y2 having observed y1.
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Updating a Gaussian process emulator
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Example: 18 input climate simulator, 255 simulator runs
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Emulators: the benefits

simulator user runs the simulator as often as possible to get
f(x1), . . . , f(xn)

n will be small if f is computationally expensive
Emulator allows us to predict f(xn+1), f(xn+2), . . . at any other
inputs, and quantify joint uncertainty in predictions, almost
instantaneously
Makes analyses requiring many simulator runs feasible, even if n
relatively small
Can derive other useful quantities (almost) for free:

We have an uncertain, true input X with probability distribution pX(x)
Define Y = f(X). Want to know

M := E(Y |f) =
∫
X
f(x)pX(x)dx

With Gaussian process emulator, M has a normal distribution, can
derive expressions for mean and variance of M
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The emulator does not replace the simulator

In a computer experiment, may want to know f(x1), . . . , f(xN ), but
can only observe f(x1), . . . , f(xn), with n < N .
As part of the analysis, we work with
p{f(xn+1), . . . , f(xN )|f(x1), . . . , f(xn)}, which we get from the
emulator.
If the simulator has given us the value of f(x), the emulator will give
us the same value
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Choice of mean function

(or things to think about when choosing your covariance kernel)

f(x) = m(x) + Z(x)

Can be important if training data set small; gaps between points can
be large.
If extrapolating, emulator predictions will ‘revert’ to m(x)
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Figure 1: Solid line: true simulator, dashed lines: pointwise mean and 95% intervals,

dots: training data. (a) A Gaussian process emulator with 5 training data. (b)

An updated emulator with 2 additional training data. (c) Extrapolating with the

emulator. (d) Extrapolating with the emulator and a constant prior mean function.

(2007) use an r-dimensional Gaussian process emulator with

E{η(x)|B,Σ,φ} = BTh(x),

Cov{η(x), η(x�)|B,Σ,φ} = c(x,x�;φ)Σ,

so that the prior variance matrix of η(x) is Σ, and that the covariance between η(x)

and η(x�) can be expressed as a product of the covariance function c(x,x�;φ) in the

input space, and the variance matrix of the outputs Σ. The variance matrix Σ can

be further parameterised, if for example, the different outputs represent the same

quantity predicted at different points in space or time. Rougier (2008) shows that by

restricting the regressor functions in h(·) to a particular product structure, substan-

tial computational savings can be made, allowing the emulator to be constructed

for much larger datasets.

For certain types of multivariate output, it can be beneficial to first reduce the

dimension of the output before building an emulator. This can work particularly

well for highly correlated outputs, for example, simulators that produce ‘similar

looking’ time series outputs for any choice of input. Bayarri et al. (2007a) use

7
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Choice of mean function

f(x) = m(x) + Z(x)

Usually choose simple linear form. If x = (x1, . . . , xd),

m(x) = β0 + β1x1 + . . .+ βdxd.

Can treat β0, . . . , βd as uncertain, and integrate out of posterior
Some claim m(x) = β0 constant form works better...
...others claim better to include higher order polynomial terms
(quadratics, interactions)
For multi level simulator case, fast simulator can be used as a prior
mean for the slow simulator
Using a second GP (with noise) for the mean can help deal with
nonstationarity (Ba and Joseph, 2012)
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Estimating the correlation function parameters

For vector input x = (x1, . . . , xd).

c(x, x′) = exp

{
−

d∑
i=1

(
xi − x′i
δi

)2
}

Can integrate out σ2 analytically, but not δi
Maximum likelihood probably most popular: the main computational
burden
Some authors do ‘full Bayes’ using MCMC
Others fix the correlation parameters, and include more polynomial
terms in the mean
Importance sampling:
Nagy, B., Loeppky, J. L. and Welch, W. J. (2007). Fast Bayesian
inference for Gaussian process models.
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Initial Gibbs sampler can be helpful for starting an optimiser. Example: 18
input climate simulator
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Summary

UQ: lots of interesting statistical problems in the use of deterministic
computer models

Propagating uncertainty
Sensitivity analysis for identifying ‘important’ inputs
Calibration/history matching/inverse problems

Modelling ‘simulator discrepancy’ perhaps the most important
challenge
Gaussian processes popular for dealing with computationally expensive
models
Often used with small datasets - diagnostics important
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