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Computer experiments

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

Challenges for statistics:
How do we make inferences about the world from a simulation of it?

how do we relate simulators to reality?

how do we estimate tunable parameters?

how do we deal with computational constraints?
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Calibration

For most simulators we specify parameters θ and i.c.s and the
simulator, f (θ), generates output X .

The inverse-problem: observe data D, estimate parameter values θ
which explain the data.

The Bayesian approach
is to find the posterior
distribution

π(θ|D) ∝ π(θ)π(D|θ)

posterior ∝
prior× likelihood



Intractability

π(θ|D) =
π(D|θ)π(θ)

π(D)

usual intractability in Bayesian inference is not knowing π(D).

a problem is doubly intractable if π(D|θ) = cθp(D|θ) with cθ
unknown (cf Murray, Ghahramani and MacKay 2006)

a problem is completely intractable if π(D|θ) is unknown and can’t
be evaluated (unknown is subjective). I.e., if the analytic distribution
of the simulator, f (θ), run at θ is unknown.

Completely intractable models are where we need to resort to ABC
methods



Approximate Bayesian Computation (ABC)

If the likelihood function is intractable, then ABC (approximate Bayesian
computation) is one of the few approaches we can use to do inference.

ABC algorithms are a collection of Monte Carlo methods used for
calibrating simulators

they do not require explicit knowledge of the likelihood function

inference is done using simulation from the model (they are
‘likelihood-free’).
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Approximate Bayesian computation (ABC)

ABC methods are popular in biological disciplines, particularly genetics.
They are

Simple to implement

Intuitive

Embarrassingly parallelizable

Can usually be applied

ABC methods can be crude but they have an important role to play.

First ABC paper candidates

Beaumont et al. 2002

Tavaré et al. 1997 or Pritchard et al. 1999

Or Diggle and Gratton 1984 or Rubin 1984

. . .
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Plan

i. Basics

ii. Efficient sampling algorithms

iii. Links to other approaches

iv. Regression adjustments/ post-hoc corrections

v. Expensive simulators



Basics



‘Likelihood-Free’ Inference

Rejection Algorithm

Draw θ from prior π(·)
Accept θ with probability π(D | θ)

Accepted θ are independent draws from the posterior distribution,
π(θ | D).

If the likelihood, π(D|θ), is unknown:

‘Mechanical’ Rejection Algorithm

Draw θ from π(·)
Simulate X ∼ f (θ) from the computer model

Accept θ if D = X , i.e., if computer output equals observation

The acceptance rate is
∫
P(D|θ)π(θ)dθ = P(D).
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Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any θ. Instead,
there is an approximate version:

Uniform Rejection Algorithm

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ε

ε reflects the tension between computability and accuracy.

As ε→∞, we get observations from the prior, π(θ).

If ε = 0, we generate observations from π(θ | D).
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ε = 10
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ε = 7.5
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ε = 5
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Rejection ABC

If the data are too high dimensional we never observe simulations that are
‘close’ to the field data - curse of dimensionality

Reduce the dimension using summary statistics, S(D).

Approximate Rejection Algorithm With Summaries

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(S(D), S(X )) < ε

If S is sufficient this is equivalent to the previous algorithm.

Simple → Popular with non-statisticians
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ABC as a probability model
Wilkinson 2008, 2013

We wanted to solve the inverse problem

D = f (θ)

but instead ABC solves
D = f (θ) + e.

ABC gives ‘exact’ inference under a different model!

We can show that

Proposition

If ρ(D,X ) = |D − X |, then ABC samples from the posterior distribution
of θ given D where we assume D = f (θ) + e and that

e ∼ U[−ε, ε]
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Generalized ABC (GABC)

Generalized rejection ABC (Rej-GABC)

1 θ ∼ π(θ) and X ∼ π(x |θ)

2 Accept (θ,X ) if U ∼ U[0, 1] ≤ πε(D|X )
maxx πε(D|x)

In uniform ABC we take

πε(D|X ) =

{
1 if ρ(D,X ) ≤ ε
0 otherwise

which recovers the uniform ABC algorithm.

2’ Accept θ ifF ρ(D,X ) ≤ ε

We can use πε(D|x) to describe the relationship between the simulator
and reality, e.g., measurement error and simulator discrepancy.

We don’t need to assume uniform error!
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Key challenges for ABC

Accuracy in ABC is determined by

Tolerance ε - controls the ‘ABC error’

I how do we find efficient algorithms that allow us to use small ε and
hence find good approximations

I constrained by limitations on how much computation we can do - rules
out expensive simulators

I how do we relate simulators to reality

Summary statistic S(D) - controls ‘information loss’

I inference is based on π(θ|S(D)) rather than π(θ|D)
I a combination of expert judgement, and stats/ML tools can be used

to find informative summaries
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Efficient Algorithms

References:

Marjoram et al. 2003

Sisson et al. 2007

Beaumont et al. 2008

Toni et al. 2009

Del Moral et al. 2011

Drovandi et al. 2011



ABCifying Monte Carlo methods

Rejection ABC is the basic ABC algorithm

Inefficient as it repeatedly samples from prior

More efficient sampling algorithms allow us to make better use of the
available computational resource: spend more time in regions of
parameter space likely to lead to accepted values.

allows us to use smaller values of ε, and hence finding better
approximations

Most Monte Carlo algorithms now have ABC versions for when we don’t
know the likelihood: IS, MCMC, SMC (×n), EM, EP etc



MCMC-ABC
Marjoram et al. 2003, Sisson and Fan 2011, Lee 2012

We are targeting the joint distribution

πABC (θ, x |D) ∝ πε(D|x)π(x |θ)π(θ)

To explore the (θ, x) space, proposals of the form

Q((θ, x), (θ′, x ′)) = q(θ, θ′)π(x ′|θ′)

seem to be inevitable.

The Metropolis-Hastings (MH) acceptance probability is then

r =
πABC (θ′, x ′|D)Q((θ′, x ′), (θ, x))

πABC (θ, x |D)Q((θ, x), (θ′, x ′))

=
πε(D|x ′)π(x ′|θ′)π(θ′)q(θ′, θ)π(x |θ)

πε(D|x)π(x |θ)π(θ)q(θ, θ′)π(x ′|θ′)

=
πε(D|x ′)q(θ′, θ)π(θ′)
πε(D|x)q(θ, θ′)π(θ)
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This gives the following MCMC algorithm

MH-ABC - PMarj(θ0, ·)
1 Propose a move from zt = (θ, x) to (θ′, x ′) using proposal Q above.

2 Accept move with probability

r((θ, x), (θ′, x ′)) = min

(
1,
πε(D|x ′)q(θ′, θ)π(θ′)
πε(D|x)q(θ, θ′)π(θ)

)
,

otherwise set zt+1 = zt .

In practice, this algorithm often gets stuck, as the probability of
generating x ′ near D can be tiny if ε is small.

Lee 2012 introduced several alternative MCMC kernels that are variance
bounding and geometrically ergodic.
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Sequential ABC algorithms
Sisson et al. 2007, Toni et al. 2008, Beaumont et al. 2009, Del Moral et al. 2011,
Drovandi et al. 2011, ...

The most popular efficient ABC algorithms are those based on sequential
methods.

We aim to sample N particles successively from a sequence of distributions

π1(θ), . . . , πT (θ) = target

For ABC we decide upon a sequence of tolerances ε1 > ε2 > . . . > εT and
let πt be the ABC distribution found by the ABC algorithm when we use
tolerance εt .



Specifically, define a sequence of target distributions

πt(θ, x) =
Iρ(D,x)<εtπ(x |θ)π(θ)

Ct
=
γt(θ, x)

Ct

ABC SMC (Toni et al., 2009)

(a) As in ABC rejection, we define a prior
distribution P (✓) and we would like to approxi-
mate a posterior distribution P (✓|D0). In ABC
SMC we do this sequentially by constructing
intermediate distributions, which converge
to the posterior distribution. We define a
tolerance schedule ✏1 > ✏2 > . . . ✏T � 0.

(b) We sample particles from a prior distribu-
tion until N particles have been accepted (have
reached the distance smaller than ✏1). For all
accepted particles we calculate weights (see
[4] for formulas and derivation). We call the
sample of all accepted particles ”Population
1”.

(c) We then sample a particle ✓⇤ from popu-
lation 1 and perturb it to obtain a perturbed
particle ✓⇤⇤ ⇠ K(✓|✓⇤), where K is a per-
turbation kernel (for example a Gaussian
random walk). We then simulate a dataset
D⇤ ⇠ f(D|✓⇤⇤) and accept the particle ✓⇤⇤

if d(D0, D
⇤⇤)  ✏2. We repeat this until we

have accepted N particles in population 2. We
calculate weights for all accepted particles.

(d) We repeat the same procedure for the
following populations, until we have accepted
N particles of the last population T and
calculated their weights. Population T is a
sample of particles that approximates the
posterior distribution.

ABC SMC is computationally much more
e�cient than ABC rejection (see [4] for
comparison).

ABC SMC (Sequential Monte Carlo)

Intermediate DistributionsPrior Posterior

✏1 ✏2 . . . ✏T�1 ✏T

Population 1 Population 2 Population T

Tina Toni, Michael Stumpf ABC dynamical systems 03/07/08 1 / 1

(a)

(b)

(c)

(d)

Figure 2: Schematic representation of ABC
SMC.

3

Picture from Toni and Stumpf 2010 tutorial



At each stage t, we aim to construct a weighted sample of particles that
approximates πt(θ, x).{(

z
(i)
t ,W

(i)
t

)}N

i=1
such that πt(z) ≈

∑
W

(i)
t δ

z
(i)
t

(dz)

where z
(i)
t = (θ

(i)
t , x

(i)
t ).
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Synthetic likelihood

The synthetic likelihood approach of Wood 2010 is an ABC algorithm
which uses a Gaussian likelihood. However, instead of using

πε(D|X ) = N (D;X , ε)

and

πABC (D|θ) =

∫
N (D;X , ε)π(X |θ)dX

they repeatedly run the simulator at θ, generating X1, . . . ,Xn, and then
use

π(D|θ) = N (D;µθ,Σθ)

where µθ and Σθ is the sample mean and covariance of the (summary of
the) simulator output.



Regression Adjustment

References:

Beaumont et al. 2003

Blum and Francois 2010

Blum 2010

Leuenberger and Wegmann 2010



Regression Adjustment

An alternative to rejection-ABC, proposed by Beaumont et al. 2002, uses
post-hoc adjustment of the parameter values to try to weaken the effect
of the discrepancy between s and sobs .

Two key ideas

use non-parametric kernel density estimation to emphasise the best
simulations

learn a non-linear model for the conditional expectation E(θ|s) as a
function of s and use this to learn the posterior at sobs .

These methods allow us to use a larger tolerance values and can
substantially improve posterior accuracy with less computation.
However, sequential algorithms can not easily be adapted, and so these
methods tend to be used with simple rejection sampling.
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In rejection ABC, the red points are used to approximate the histogram.
Using regression-adjustment, we use the estimate of the posterior mean at
sobs and the residuals from the fitted line to form the posterior.



Models

Beaumont et al. 2003 used a local linear model for m(s) in the vicinity of
sobs

m(si ) = α + βT si

fit by minimising ∑
(θi −m(si ))2Kε(si − sobs)

so that observations nearest to sobs are given more weight in the fit.

The empirical residuals are then weighted so that the approximation to
the posterior is a weighted particle set

{θ∗i ,Wi = Kε(si − sobs)}
π(θ|sobs) = m̂(sobs) +

∑
wiδθ∗i (θ)
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Normal-normal conjugate model, linear regression
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200 data points in both approximations. The regression-adjusted ABC
gives a more confident posterior, as the θi have been adjusted to account
for the discrepancy between si and sobs



Extensions: Non-linear models
Blum and Francois 2010 proposed a nonlinear heteroscedastic model

θi = m(si ) + σ(su)ei

where m(s) = E(θ|s) and σ2(s) = Var(θ|s). They used feed-forward
neural networks for both the conditional mean and variance.

  

Blum and OF (2009) suggest the use of non-linear 
conditional heteroscedastic regression models

θ∗i = m(sobs) + (θi − m̂(si ))
σ̂(sobs)

σ̂(si )

Blum 2010 contains estimates of the
bias and variance of these estimators:
properties of the ABC estimators
may seriously deteriorate as dim(s)
increases.

R package diyABC implements these methods.
Picture from Michael Blum



Expensive simulators



Motivation

Expensive stochastic simulators exist
E.g. Cellular Potts model for a human colon crypt

agent-based models, with proliferation, differentiation and migration
of cells

stem cells generate a compartment of transient amplifying cells that
produce colon cells.

each simulation runs MCMC of Hamiltonian dynamics

want to infer number of stem cells by comparing patterns with real
data

Each simulation takes about an hour, and is stochastic.

Efficient algorithms can take us only so far...

We will continue face situations in which we are limited by computer
power.



If in doubt, use a Gaussian process

Sacks et al. 1989 introduce the idea of an emulator

if f (x) is an expensive simulator, approximate it by a cheaper
surrogate model (if in doubt...)

Kennedy and O’Hagan 2001 consider using emulators for a Bayesian
inference problem

Others have done uncertainty analysis, sensitivity analysis, design, error
estimation etc.



Emulating likelihood
Wilkinson 2014, Dahlin and Lindsten 2014

Kennedy and O’Hagan built emulators of entire simulator response across
all of input space for deterministic functions.

If parameter estimation/model selection is the goal, we only need the
likelihood function

L(θ) = π(D|θ)

which is defined for fixed D.

Instead of modelling the simulator output, we can instead model L(θ)

A local approximation: D remains fixed, and we only need learn L as
a function of θ

1d response surface

But, it can be hard to model.
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ABC
One approach is to emulate the synthetic likelihood introduced in Wood
2010.

π(D|θ) = N (θ|µθ,Σθ)

This suggested modelling dependence on θ to mitigate the cost

[...] the forward model may exhibit regularity in its dependence on
the parameters of interest[...]. Replacing the forward model with an
approximation or “surrogate” decouples the required number of
forward model evaluations from the length of the MCMC chain, and
thus can vastly reduce the overall cost of interence. Conrad et al. 2015

An alternative is to emulate the GABC likelihood, or the discrepancy
function, or µθ and Σθ, or ...

Henderson et al 2009
Wilkinson 2014
Meeds and Welling 2014
Jabot 2014
Gutmann and Corander 2015
+Others
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History matching waves
Wilkinson 2014

The likelihood is too difficult to model, so we model the log-likelihood
instead.

l(θ) = log L(θ)

However, the log-likelihood for a typical problem ranges across too wide a
range of values.

Consequently, most GP models will struggle to model the log-likelihood
across the parameter space.

Introduce waves of history matching, as used in Michael Goldstein’s
work.

In each wave, build a GP model that can rule out regions of space as
implausible.
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Implausibility

Given a model of the likelihood

l(θ) ∼ N(m(θ), σ2)

we decide that θ is implausible if

m(θ) + 3σ < T

The threshold T can be set in a variety of ways. We use

T = max
θi

l(θi )− 10

for the Ricker model results below,
I a difference of 10 on the log scale between two likelihoods, means that

assigning the θ with the smaller log-likelihood a posterior density of 0
(by saying it is implausible) is a good approximation.
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This still wasn’t enough in some problems, so for the first wave we
model log(− log π(D|θ))

For the next wave, we begin by using the Gaussian processes from
the previous waves to decide which parts of the input space are
implausible.

We then extend the design into the not-implaussible range and build
a new Gaussian process

This new GP will lead to a new definition of implausibility

. . .



Example: Ricker Model

The Ricker model is one of the prototypic ecological models.

used to model the fluctuation of the observed number of animals in
some population over time

It has complex dynamics and likelihood, despite its simple
mathematical form.

Ricker Model

Let Nt denote the number of animals at time t.

Nt+1 = rNte
−Nt+er

where et are independent N(0, σ2
e ) process noise

Assume we observe counts yt where

yt ∼ Po(φNt)

Used in Wood to demonstrate the synthetic likelihood approach.



Results - Design 1 - 128 pts



Diagnostics for GP 1 - threshold = 5.6



Results - Design 2 - 314 pts - 38% of space implausible



Diagnostics for GP 2 - threshold = -21.8



Design 3 - 149 pts - 62% of space implausible



Diagnostics for GP 3 - threshold = -20.7



Design 4 - 400 pts - 95% of space implausible



Diagnostics for GP 4 - threshold = -16.4



MCMC Results
Comparison with Wood 2010, synthetic likelihood approach
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Computational details

The Wood MCMC method used 105 × 500 simulator runs

The GP code used (128 + 314 + 149 + 400) = 991× 500 simulator
runs

I 1/100th of the number used by Wood’s method.

By the final iteration, the Gaussian processes had ruled out over 98% of
the original input space as implausible,

the MCMC sampler did not need to waste time exploring those
regions.



The ML invasion



Conclusions

ABC allows inference in models for which it would otherwise be
impossible.

not a silver bullet - if likelihood methods possible, use them instead.

Algorithms and post-hoc regression can greatly improve computational
efficiency, but computation is still usually the limiting factor. Challenge is

to develop more efficient methods to allow inference in more
expensive models

find better ways to more efficiently summarize the data

Thank you for listening!
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